Motor skill training induces changes in the excitability of the leg cortical area in healthy humans

Exp Brain Res. 2004 Nov;159(2):197-205. doi: 10.1007/s00221-004-1947-5. Epub 2004 Jul 28.

Abstract

Training-induced changes in cortical excitability may play an important role in rehabilitation of gait ability in patients with neurological disorders. In this study, we investigated the effect of a 32-min period of motor skill, non-skill and passive training involving the ankle muscles on leg motor cortical excitability in healthy humans. Transcranial magnetic stimulation (TMS) at a range of intensities was applied to obtain a recruitment curve of the motor evoked potentials (MEPs) in the tibialis anterior (TA) muscle before and after training. We also explored the effect of training on inhibitory and facilitatory cortical circuits by using a paired-pulse TMS technique at intervals of 2.5 ms (short-interval intracortical inhibition, SICI) and 8 ms (intracortical facilitation, ICF). During motor skill training, subjects were instructed to make a cursor follow a series of target lines on a computer screen by performing voluntary ankle dorsi- and plantarflexion movements. Non-skill and passive training consisted of repeated voluntary and assisted dorsi- and plantarflexion movements, respectively. Recruitment curves increased significantly after 32 min of motor skill training but not after non-skill and passive training, suggesting that only skill motor training increases motor cortical excitability. Motor skill training was not accompanied by any changes in the recruitment curves of TA MEPs evoked by transcranial electrical stimulation, suggesting that the increased MEPs to TMS was likely caused by changes in excitability at a cortical site. SICI was decreased after 32 min of motor skill training but no changes were observed in ICF. We conclude that similar plastic changes as have previously been reported for the hand motor following motor skill training may also be observed for the leg motor area. The observed plastic changes appeared to be related to the degree of difficulty in the motor task, and may be of relevance for rehabilitation of gait disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Ankle / innervation
  • Ankle / physiology
  • Electric Stimulation
  • Electromyography
  • Evoked Potentials, Motor / physiology*
  • Female
  • Humans
  • Learning / physiology*
  • Leg / innervation*
  • Leg / physiology
  • Magnetics
  • Male
  • Motor Cortex / physiology*
  • Motor Skills / physiology*
  • Muscle Contraction / physiology
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology
  • Neural Inhibition / physiology
  • Neuronal Plasticity / physiology*
  • Physical Fitness / physiology
  • Pyramidal Tracts / physiology
  • Reference Values
  • Time Factors