Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize

Theor Appl Genet. 2004 Dec;110(1):92-105. doi: 10.1007/s00122-004-1781-y. Epub 2004 Nov 12.


A population of 300 F(3:4) lines derived from the cross between maize inbred lines F2 and F252 was evaluated for testcross value in a large range of environmental conditions (11 different locations in 2 years: 1995 and 1996) in order to study (1) the magnitude of genotype x environment and (2) the stability of quantitative trait loci (QTL) effects. Several agronomic traits were measured: dry grain yield (DGY), kernel weight, average number of kernels per plant, silking date (SD) and grain moisture at harvest. A large genotype x environment interaction was found, particularly for DGY. A hierarchical classification of trials and an additive main effects and multiplicative interaction (AMMI) model were carried out. Both methods led to the conclusion that trials could be partitioned into three groups consistent with (1) the year of experiment and (2) the water availability (irrigated vs non-irrigated) for the trials sown in 1995. QTL detection was carried out for all the traits in the different groups of trials. Between 9 and 15 QTL were detected for each trait. QTL x group and QTL x trial effects were tested and proved significant for a large proportion of QTL. QTL detection was also performed on coordinates on the first two principal components (PC) of the AMMI model. PC QTL were generally detected in areas where QTL x group and QTL x trial interactions were significant. A region located on chromosome 8 near an SD QTL seemed to play a key role in DGY stability. Our results confirm the key role of water availability and flowering earliness on grain yield stability in maize.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping
  • Chromosomes, Plant / genetics
  • Crosses, Genetic
  • Environment
  • Genes, Plant
  • Genotype
  • Models, Genetic
  • Phenotype
  • Polymorphism, Restriction Fragment Length
  • Quantitative Trait Loci
  • Zea mays / genetics*
  • Zea mays / growth & development