Context-dependent selection of visuomotor maps

BMC Neurosci. 2004 Nov 25;5:47. doi: 10.1186/1471-2202-5-47.


Background: Behavior results from the integration of ongoing sensory signals and contextual information in various forms, such as past experience, expectations, current goals, etc. Thus, the response to a specific stimulus, say the ringing of a doorbell, varies depending on whether you are at home or in someone else's house. What is the neural basis of this flexibility? What mechanism is capable of selecting, in a context-dependent way an adequate response to a given stimulus? One possibility is based on a nonlinear neural representation in which context information regulates the gain of stimulus-evoked responses. Here I explore the properties of this mechanism.

Results: By means of three hypothetical visuomotor tasks, I study a class of neural network models in which any one of several possible stimulus-response maps or rules can be selected according to context. The underlying mechanism based on gain modulation has three key features: (1) modulating the sensory responses is equivalent to switching on or off different subpopulations of neurons, (2) context does not need to be represented continuously, although this is advantageous for generalization, and (3) context-dependent selection is independent of the discriminability of the stimuli. In all cases, the contextual cues can quickly turn on or off a sensory-motor map, effectively changing the functional connectivity between inputs and outputs in the networks.

Conclusions: The modulation of sensory-triggered activity by proprioceptive signals such as eye or head position is regarded as a general mechanism for performing coordinate transformations in vision. The present results generalize this mechanism to situations where the modulatory quantity and the input-output relationships that it selects are arbitrary. The model predicts that sensory responses that are nonlinearly modulated by arbitrary context signals should be found in behavioral situations that involve choosing or switching between multiple sensory-motor maps. Because any relevant circumstancial information can be part of the context, this mechanism may partly explain the complex and rich behavioral repertoire of higher organisms.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Brain Mapping*
  • Computer Simulation
  • Discrimination, Psychological / physiology
  • Humans
  • Models, Neurological*
  • Neural Networks, Computer*
  • Neurons / physiology
  • Nonlinear Dynamics
  • Orientation / physiology*
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation / methods
  • Predictive Value of Tests
  • Psychomotor Performance / physiology*
  • Saccades / physiology