Water-dispersible gold nanoparticles (GNPs) were synthesized by the polymer in situ redox technique at room temperature using poly(4-vinylphenol) (PVPh) as a simultaneous template/stabilizer and reducing agent. GNPs were characterized by its surface plasmon absorption peak at 536 nm. The average particle size of the gold-poly(4-vinylphenol) (Au-PVPh) nanocomposites decreases with increase in the ratio of PVPh to gold salt. A uniform multilayer of Au-PVPh nanocomposites was fabricated on glass surface by electrostatic layer-by-layer assembly using poly(diallyldimethylammonium chloride) (PDDAC) as the oppositely charged polycation. UV-vis spectra of the consecutive multilayer showed that the absorbance at 549 nm corresponding to GNPs increases linearly with the number of Au-PVPh nanocomposite layers, indicating regular bilayer growth.