Multivariate curve resolution applied to the analysis and resolution of two-dimensional [1H,15N] NMR reaction spectra

Anal Chem. 2004 Dec 1;76(23):7094-101. doi: 10.1021/ac049509t.

Abstract

Multivariate curve resolution is proposed for the study of complex chemical reactions monitored by two-dimensional (2D) NMR spectroscopy. In particular, in this work, multivariate curve resolution is applied to the study of the reaction between (15)N-labeled cisplatin and the amino acid-nucleotide hybrid (Phac-Met-linker-p(5')dG). At several stages of the reaction, 2D [(1)H,(15)N] HSQC NMR spectra were acquired and stored in data matrices. In a first step, multivariate curve resolution was applied to analyze individually each one of these 2D spectra, allowing the resolution of the corresponding (1)H and (15)N one-dimensional correlation spectra. In a second step, the whole set of 2D spectra recorded along the reaction were simultaneously analyzed by multivariate curve resolution, allowing the resolution of the kinetic concentration profiles and of the pure 2D NMR spectra of each of the species detected along the reaction. Results finally obtained confirmed previously postulated reaction mechanisms involving the existence of two monofunctional adducts and of two bifunctional adducts, with the structure of one of them not completely resolved.