Purpose: To determine whether specific regions of cerebral cortex are activated at the onset and during the propagation of absence seizures.
Methods: Twenty-five absence seizures were recorded in five subjects (all women; age 19-58 years) with primary generalized epilepsy. To improve spatial resolution, all studies were performed with dense-array, 256-channel scalp EEG. Source analysis was conducted with equivalent dipole (BESA) and smoothed linear inverse (LORETA) methods. Analyses were applied to the spike components of each spike-wave burst in each seizure, with sources visualized with standard brain models.
Results: For each patient, the major findings were apparent on inspection of the scalp EEG maps and waveforms, and the two methods of source analysis gave generally convergent results. The onset of seizures was typically associated with activation of discrete, often unilateral areas of dorsolateral frontal or orbital frontal lobe. Consistently across all seizures, the negative slow wave was maximal over frontal cortex, and the spike that appeared to follow the slow wave was highly localized over frontopolar regions of orbital frontal lobe. In addition, sources in dorsomedial frontal cortex were engaged for each spike-wave cycle. Although each patient showed unique features, the absence seizures of all patients showed rapid, stereotyped evolution to engage both mesial frontal and orbital frontal cortex sources during the repeating cycles of spike-wave activity.
Conclusions: These data suggest that absence seizures are not truly "generalized," with immediate global cortical involvement, but rather involve selective cortical networks, including orbital frontal and mesial frontal regions, in the propagation of ictal discharges.