Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 1033, 42-51

Carnitine Deficiency Disorders in Children


Carnitine Deficiency Disorders in Children

Charles A Stanley. Ann N Y Acad Sci.


Mitochondrial oxidation of long-chain fatty acids provides an important source of energy for the heart as well as for skeletal muscle during prolonged aerobic work and for hepatic ketogenesis during long-term fasting. The carnitine shuttle is responsible for transferring long-chain fatty acids across the barrier of the inner mitochondrial membrane to gain access to the enzymes of beta-oxidation. The shuttle consists of three enzymes (carnitine palmitoyltransferase 1, carnitine acylcarnitine translocase, carnitine palmitoyl-transferase 2) and a small, soluble molecule, carnitine, to transport fatty acids as their long-chain fatty acylcarnitine esters. Carnitine is provided in the diet (animal protein) and also synthesized at low rates from trimethyl-lysine residues generated during protein catabolism. Carnitine turnover rates (300-500 micromol/day) are <1% of body stores; 98% of carnitine stores are intracellular (total carnitine levels are 40-50 microM in plasma vs. 2-3 mM in tissue). Carnitine is removed by urinary excretion after reabsorption of 98% of the filtered load; the renal carnitine threshold determines plasma concentrations and total body carnitine stores. Because of its key role in fatty acid oxidation, there has long been interest in the possibility that carnitine might be of benefit in genetic or acquired disorders of energy production to improve fatty acid oxidation, to remove accumulated toxic fatty acyl-CoA metabolites, or to restore the balance between free and acyl-CoA. Two disorders have been described in children where the supply of carnitine becomes limiting for fatty acid oxidation: (1) A recessive defect of the muscle/kidney sodium-dependent, plasma membrane carnitine symporter, which presents in infancy with cardiomyopathy or hypoketotic hypoglycemia; treatment with oral carnitine is required for survival. (2) Chronic administration of pivalate-conjugated antibiotics in which excretion of pivaloyl-carnitine can lead to carnitine depletion; tissue levels may become low enough to limit fatty acid oxidation, although no cases of illness due to carnitine deficiency have been described. There is speculation that carnitine supplements might be beneficial in other settings (such as genetic acyl-CoA oxidation defects--"secondary carnitine deficiency", chronic ischemia, hyperalimentation, nutritional carnitine deficiency), but efficacy has not been documented. The formation of abnormal acylcarnitines has been helpful in expanded newborn screening programs using tandem mass-spectrometry of blood spot acylcarnitine profiles to detect genetic fatty acid oxidation defects in neonates. Carnitine-deficient diets (vegetarian) do not have much effect on carnitine pools in adults. A modest 50% reduction in carnitine levels is associated with hyperalimentation in newborn infants, but is of doubtful significance. The above considerations indicate that carnitine does not become rate-limiting unless extremely low; testing the benefits of nutritional supplements may require invasive endurance studies of fasting ketogenesis or muscle and cardiovascular work.

Similar articles

See all similar articles

Cited by 40 PubMed Central articles

See all "Cited by" articles

MeSH terms