Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study

Radiology. 2005 Feb;234(2):509-16. doi: 10.1148/radiol.2342031323. Epub 2004 Dec 15.


Purpose: To compare signal-to-noise ratios (SNRs), contrast-to-noise ratios (CNRs), image quality, and confidence in diagnosis between 1.5- and 3.0-T diffusion-weighted (DW) magnetic resonance (MR) imaging of ischemic stroke lesions.

Materials and methods: The study design was approved by the institutional review board, and all patients gave informed consent. In a prospective intraindividual study, 25 patients who had clinical symptoms consistent with ischemic stroke underwent DW MR imaging at both 1.5 T and 3.0 T. The 3.0- or 1.5-T examination was performed immediately one after the other, in random order. Two readers in consensus recorded the presence and number of ischemic lesions and rated image quality and lesion conspicuity. The image SNR and the CNR of the ischemic lesions were quantified. Paired Student t and Wilcoxon matched-pairs signed rank tests were used to test for statistical significance.

Results: Image quality at 3.0-T DW MR imaging was consistently lower than that at 1.5-T DW MR imaging owing to greater image distortions (P < .05). Yet, overall SNR and lesion CNR at 3.0 T increased significantly; mean increases were 48.8% (P < .001) and 96.3% (P < .01), respectively. The higher overall SNR and lesion CNR translated into a significantly higher sensitivity in the detection of ischemic lesions at 3.0 T than at 1.5 T. Of the total of 48 lesions that were identified in 19 of the 25 patients, 47 (98%) were diagnosed at 3.0 T and 36 (75%) were diagnosed at 1.5 T. In addition, the conspicuity of the lesions that were visible with both systems was significantly higher at 3.0 T (P < .001).

Conclusion: Although 3.0-T DW MR imaging generates greater image distortions, it yields increased SNR and CNR compared with DW MR imaging at 1.5 T. The increased CNR at 3.0 T translates into a significantly improved diagnostic confidence in the detection of focal apparent diffusion coefficient changes in the setting of subacute and acute ischemic stroke.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial

MeSH terms

  • Acute Disease
  • Adult
  • Aged
  • Aged, 80 and over
  • Diffusion Magnetic Resonance Imaging / methods*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Prospective Studies
  • Random Allocation
  • Sensitivity and Specificity
  • Stroke / diagnosis*