Modelling the impact of climate change on woody plant population dynamics in South African savanna

BMC Ecol. 2004 Dec 17;4(1):17. doi: 10.1186/1472-6785-4-17.

Abstract

Background: In Southern Africa savannas climate change has been proposed to alter rainfall, the most important environmental driver for woody plants. Woody plants are a major component of savanna vegetation determining rangeland condition and biodiversity. In this study we use a spatially explicit, stochastic computer model to assess the impact of climate change on the population dynamics of Grewia flava, a common, fleshy-fruited shrub species in the southern Kalahari. Understanding the population dynamics of Grewia flava is a crucial task, because it is widely involved in the shrub/bush encroachment process, a major concern for rangeland management due to its adverse effect on livestock carrying capacity and biodiversity.

Results: For our study we consider four climate change scenarios that have been proposed for the southern Kalahari for the coming decades: (1) an increase in annual precipitation by 30-40%, (2) a decrease by 5-15%, (3) an increase in variation of extreme rainfall years by 10-20%, (4) and increase in temporal auto-correlation, i.e. increasing length and variation of periodic rainfall oscillations related to El Nino/La Nina phenomena. We evaluate the slope z of the time-shrub density relationship to quantify the population trend. For each climate change scenario we then compared the departure of z from typical stable population dynamics under current climatic conditions. Based on the simulation experiments we observed a positive population trend for scenario (1) and a negative trend for scenario (2). In terms of the projected rates of precipitation change for scenario (3) and (4) population dynamics were found to be relatively stable. However, for a larger increase in inter-annual variation or in temporal auto-correlation of rainfall population trends were negative, because favorable rainfall years had a limited positive impact due to the limited shrub carrying capacity.

Conclusions: We conclude that a possible increase in precipitation will strongly facilitate shrub encroachment threatening savanna rangeland conditions and regional biodiversity. Furthermore, the negative effects found for positive auto-correlated rainfall support current ecological theory stating that periodically fluctuating environments can reduce population viability because species suffer disproportionately from poor environmental conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • Conservation of Natural Resources
  • Desert Climate*
  • Ecosystem
  • Models, Biological*
  • Plants*
  • Population Dynamics
  • Rain*
  • South Africa