A novel liquid chromatography/tandem mass spectrometry based depletion method for measuring red blood cell partitioning of pharmaceutical compounds in drug discovery

Rapid Commun Mass Spectrom. 2005;19(2):250-4. doi: 10.1002/rcm.1777.


A novel liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based depletion method for measuring compound partitioning between human plasma and red blood cells (RBC) in a drug discovery environment is presented. Conventionally, RBC partitioning is determined by separate measurements of drug concentrations in equilibrating plasma and whole blood or RBC using separate standards prepared in their respective matrices, i.e., in plasma and whole blood or RBC lysates. The process is very tedious, labor-intensive, and difficult to automate. In addition, interferences from the heme and other highly abundant cellular composites make the measurement of the drug concentration in whole blood or RBC inevitably variable even with a highly specific LC/MS/MS method. Therefore, there is an imminent need to develop a straightforward and fast method to assess the partitioning of drug-like compounds in RBC. This work describes an LC/MS/MS-based depletion assay that measures the compound concentration in plasma that has been equilibrating with RBC. Compounds were spiked into fresh human whole blood and plasma respectively to a final concentration of 500 nM. Both the spiked whole blood and plasma control were incubated at 37 degrees C for up to 60 min. During the time course, aliquots of plasma and whole blood from both incubation mixtures were sampled at 10 and 60 min. The whole blood samples were centrifuged to yield the plasma. The plasma samples from both incubations were extracted using a protein precipitation method, and analyzed using LC/MS/MS under the multiple-reaction monitoring (MRM) mode. The RBC partitioning ratio was calculated using the analyte peak area responses of the plasma samples through an equation deduced in this work. The method was first tested using two commercial compounds, phenoprobamate and acetazolamide, to determine the optimal incubation conditions and the concentration dependency of the assay. The assay reproducibility was also assessed by three inter-day assays for phenoprobamate. This method was further evaluated using 20 commercial compounds of different classes with a wide range of RBC partitioning coefficients and the results were compared with those reported in the literature. Excellent correlation (R2=0.9396) was found between the measured and literature values. In addition, several proprietary compounds were assayed using both the new and traditional methods and the measured partitioning ratios from the two methods are equivalent. The experiments in this work demonstrate that the LC/MS/MS-based depletion method can provide direct and accurate measurement of RBC partitioning for compounds in drug discovery.

MeSH terms

  • Acetazolamide / pharmacokinetics
  • Chemistry, Pharmaceutical / methods*
  • Chromatography, Liquid
  • Drugs, Investigational / analysis
  • Drugs, Investigational / pharmacokinetics*
  • Erythrocytes / metabolism*
  • Humans
  • Mass Spectrometry / methods*
  • Solubility


  • Drugs, Investigational
  • Acetazolamide