Initial chromosome damage but not DNA damage is greater in ataxia telangiectasia cells

Radiat Res. 1992 Apr;130(1):94-103.


Cells derived from individuals with ataxia telangiectasia (AT) exhibit increased sensitivity to ionizing radiation and certain drugs (e.g., bleomycin, neocarzinostatin, and etoposide) as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. To understand better the basis of this sensitivity, three AT and two normal lymphoblastoid cell lines were fractionated into cell cycle phase-enriched populations by centrifugal elutriation and then examined for their survival and their relative initial levels of DNA damage (neutral DNA filter elution) and chromosome damage (premature chromosome condensation). AT cells exhibited decreased levels of survival in all phases of the cell cycle; however, AT cells in early G1 phase were especially sensitive compared with normal cells in G1 phase. While AT and normal cells exhibited similar levels of initial DNA double-strand breaks in exponential populations as well as throughout the cell cycle, AT cells showed nearly twofold higher initial levels of chromosome damage than normal control cells in G1 and G2 phase. These results suggest that there is a higher rate of conversion of DNA double-strand breaks into chromosome breaks in AT cells, perhaps due to a difference in chromatin organization or stability. Thus one determining component of cellular radiosensitivity might include chromatin structure.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Ataxia Telangiectasia / genetics*
  • Ataxia Telangiectasia / pathology
  • Cell Cycle / radiation effects
  • Cell Line
  • Cell Survival / radiation effects
  • Chromosome Aberrations*
  • DNA Damage / radiation effects*
  • Humans