The OPG/RANKL/RANK system in metabolic bone diseases

J Musculoskelet Neuronal Interact. 2004 Sep;4(3):268-75.


The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.

Publication types

  • Review

MeSH terms

  • Animals
  • Bone Diseases, Metabolic / metabolism*
  • Bone Diseases, Metabolic / physiopathology
  • Carrier Proteins / metabolism*
  • Glycoproteins / metabolism*
  • Humans
  • Membrane Glycoproteins / metabolism*
  • Osteoprotegerin
  • RANK Ligand
  • Receptor Activator of Nuclear Factor-kappa B
  • Receptors, Cytoplasmic and Nuclear / metabolism*
  • Receptors, Tumor Necrosis Factor


  • Carrier Proteins
  • Glycoproteins
  • Membrane Glycoproteins
  • Osteoprotegerin
  • RANK Ligand
  • Receptor Activator of Nuclear Factor-kappa B
  • Receptors, Cytoplasmic and Nuclear
  • Receptors, Tumor Necrosis Factor
  • TNFRSF11A protein, human
  • TNFRSF11B protein, human
  • TNFSF11 protein, human