Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone-derived cells: determinants of ligand binding and bioactivity

Endocrinology. 2005 Apr;146(4):1863-70. doi: 10.1210/en.2004-1262. Epub 2004 Dec 29.

Abstract

PTH comprises 84 amino acids of which the first 34 are sufficient for full activation of the classical PTH/PTHrP receptor, the type 1 PTH receptor. It is known that multiple carboxyl (C)-terminal fragments of PTH are present in the blood and that they comprise the majority of circulating PTH. C-PTH fragments, previously regarded as by-products of PTH metabolism, are directly secreted by the parathyroid glands or arise from the peripheral cleavage of the intact hormone. Compelling evidence now strongly suggests that these C-PTH fragments mediate biological effects via activation of a receptor that specifically recognizes the C-terminal portion of intact PTH, and this receptor is therefore named the carboxyl-terminal PTH receptor (CPTHR). We have previously reported that osteocytes abundantly express this novel receptor and that its activation is involved in cell survival and communication. Here we report the characterization of determinants of PTH that are required for high-affinity binding to the CPTHR. Using synthetic PTH peptides harboring alanine substitution or truncations, we showed the existence of discrete binding domains and critical residues within the intact hormone. We have furthermore identified eight amino acids within the PTH sequence that play key roles in optimizing the binding affinity of C-PTH fragments to CPTHRs. These include the tripeptide sequence Arg(25)-Lys(26)-Lys(27), the dibasic sequence Lys(53)-Lys(54), and three additional residues within the PTH (55-84) sequence, Asn(57), Lys(65), and Lys(72). Functional analysis of these residues demonstrated a strong correlation between binding affinity and biological effect and points to a potential role of CPTHR activation in regulating bone cell survival.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Cells, Cultured
  • Humans
  • Molecular Sequence Data
  • Osteocytes / metabolism*
  • Parathyroid Hormone / metabolism*
  • Peptide Fragments / metabolism*
  • Receptor, Parathyroid Hormone, Type 1 / metabolism*

Substances

  • Parathyroid Hormone
  • Peptide Fragments
  • Receptor, Parathyroid Hormone, Type 1