The discovery that the apolipoprotein E4 (apoE4) allele is genetically linked to both sporadic and familial late onset Alzheimer's disease (AD) raises the possibility that a dysfunction of the lipid transport system could seriously affect lipid homeostasis in the brain of AD subjects. The presence of the E4 allele has been associated with lower levels of apoE in both serum and brain tissues of normal and AD subjects. In an attempt to reverse the apoE deficit in AD, we identified and characterized several apoE inducer agents using a low throughput-screening assay. The most promising of these compounds is called probucol. Administration of probucol, an old cholesterol lowering drug, in mild to moderate sporadic AD led to significant increases in CSF apoE levels and a decrease of CSF beta amyloid 1-42 without significant modifications of CSF tau concentration or CSF lipid peroxides levels. These results are consistent with recent reports suggesting that the long term use of cholesterol lowering drugs that block 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity in the fourth and fifth decade of life may help reduce the risk of developing AD at later age. These results indicate that, in addition to lipid transport mediated by apoE, cholesterol homeostasis in the brain is markedly altered in response to changes in the HMGR pathway; suggesting a possible explanation for the potentially beneficial effect of statins in common AD.