The APC subunit Doc1 promotes recognition of the substrate destruction box

Curr Biol. 2005 Jan 11;15(1):11-8. doi: 10.1016/j.cub.2004.12.066.

Abstract

Background: Accurate chromosome segregation during mitosis requires the coordinated destruction of the mitotic regulators securin and cyclins. The anaphase-promoting complex (APC) is a multisubunit ubiquitin-protein ligase that catalyzes the polyubiquitination of these and other proteins and thereby promotes their destruction. How the APC recognizes its substrates is not well understood. In mitosis, the APC activator Cdc20 binds to the APC and is thought to recruit substrates by interacting with a conserved target protein motif called the destruction box. A related protein, called Cdh1, performs a similar function during G1. Recent evidence, however, suggests that the core APC subunit Doc1 also contributes to substrate recognition.

Results: To better understand the mechanism by which Doc1 promotes substrate binding to the APC, we generated a series of point mutations in Doc1 and analyzed their effects on the processivity of substrate ubiquitination. Mutations that reduce Doc1 function fall into two classes that define spatially and functionally distinct regions of the protein. One region, which includes the carboxy terminus, anchors Doc1 to the APC but does not influence substrate recognition. The other region, located on the opposite face of Doc1, is required for Doc1 to enhance substrate binding to the APC. Importantly, stimulation of binding by Doc1 also requires that the substrate contain an intact destruction box. Cells carrying DOC1 mutations that eliminate substrate recognition delay in mitosis with high levels of APC substrates.

Conclusions: Doc1 contributes to recognition of the substrate destruction box by the APC. This function of Doc1 is necessary for efficient substrate proteolysis in vivo.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anaphase-Promoting Complex-Cyclosome
  • Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome
  • Blotting, Western
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Cell Cycle Proteins / physiology
  • Chromosome Segregation / physiology*
  • Cyclins / metabolism
  • Fluorescent Antibody Technique, Indirect
  • Indoles
  • Mitosis / physiology*
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Nuclear Proteins / metabolism
  • Protein Binding
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Saccharomyces cerevisiae Proteins / physiology
  • Securin
  • Ubiquitin-Protein Ligase Complexes / metabolism*
  • Ubiquitin-Protein Ligase Complexes / physiology

Substances

  • Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome
  • Cell Cycle Proteins
  • Cyclins
  • DOC1 protein, S cerevisiae
  • Indoles
  • Nuclear Proteins
  • PDS1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Securin
  • DAPI
  • Ubiquitin-Protein Ligase Complexes
  • Anaphase-Promoting Complex-Cyclosome