A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators
- PMID: 15651568
- DOI: 10.1109/TBME.2004.839797
A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators
Abstract
A new CMOS current source is described for biomedical implantable microstimulator applications, which utilizes MOS transistors in deep triode region as linearized voltage controlled resistors (VCR). The VCR current source achieves large voltage compliance, up to 97% of the supply voltage, while maintaining high output impedance in the 100 MOmega range to keep the stimulus current constant within 1% of the desired value irrespective of the site and tissue impedances. This approach improves stimulation efficiency, extends power supply lifetime, and saves chip area especially when the stimulation current level is high in the milliampere range. A prototype 4-channel microstimulator chip is fabricated in the AMI 1.5-microm, 2-metal, 2-poly, n-well standard CMOS process. With a 5-V supply, each stimulating site driver provides at least 425-V compliance and > 10 MOmega output impedance, while sinking up to 210 microA, and occupies 0.05 mm2 in chip area. A modular 32-site wireless neural stimulation microsystem, utilizing the VCR current source, is under development.
Similar articles
-
A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):449-57. doi: 10.1109/TNSRE.2007.903970. IEEE Trans Neural Syst Rehabil Eng. 2007. PMID: 17894278
-
Constant-current adjustable-waveform microstimulator for an implantable hybrid neural prosthesis.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2436-9. doi: 10.1109/IEMBS.2007.4352820. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18002486
-
A power efficient electronic implant for a visual cortical neuroprosthesis.Artif Organs. 2005 Mar;29(3):233-8. doi: 10.1111/j.1525-1594.2005.29042.x. Artif Organs. 2005. PMID: 15725224
-
Electrode-tissues interface: modeling and experimental validation.Biomed Mater. 2007 Mar;2(1):S7-S15. doi: 10.1088/1748-6041/2/1/S02. Epub 2007 Mar 2. Biomed Mater. 2007. PMID: 18458423 Review.
-
Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation.Biomed Tech (Berl). 2004 Apr;49(4):72-7. doi: 10.1515/BMT.2004.015. Biomed Tech (Berl). 2004. PMID: 15171585 Review.
Cited by
-
Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems.IEEE Trans Biomed Eng. 2019 Sep;66(9):2481-2490. doi: 10.1109/TBME.2018.2890530. Epub 2019 Jan 1. IEEE Trans Biomed Eng. 2019. PMID: 30605090 Free PMC article.
-
Design of a Compact Wireless Multi-Channel High Area-Efficient Stimulator with Arbitrary Channel Configuration.Micromachines (Basel). 2017 Dec 27;9(1):6. doi: 10.3390/mi9010006. Micromachines (Basel). 2017. PMID: 30393283 Free PMC article.
-
A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.IEEE J Solid-State Circuits. 2015 Jan 1;50(1):214-229. doi: 10.1109/JSSC.2014.2355822. IEEE J Solid-State Circuits. 2015. PMID: 26251552 Free PMC article.
-
An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71. doi: 10.1109/TBCAS.2010.2078814. IEEE Trans Biomed Circuits Syst. 2010. PMID: 23850753 Free PMC article.
-
On the Design of a Flexible Stimulator for Animal Studies in Auditory Prostheses.Biomed Signal Process Control. 2009 Nov 27;2009:1-5. doi: 10.1016/j.bspc.2011.05.008. Biomed Signal Process Control. 2009. PMID: 21804862 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
