BNIP-2 induces cell elongation and membrane protrusions by interacting with Cdc42 via a unique Cdc42-binding motif within its BNIP-2 and Cdc42GAP homology domain

Exp Cell Res. 2005 Feb 15;303(2):263-74. doi: 10.1016/j.yexcr.2004.08.044.


The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • COS Cells
  • Carrier Proteins / chemistry
  • Carrier Proteins / genetics
  • Carrier Proteins / physiology*
  • Cell Line
  • Cell Membrane / physiology
  • Cell Membrane / ultrastructure
  • Cell Shape / physiology*
  • GTPase-Activating Proteins / chemistry
  • GTPase-Activating Proteins / metabolism
  • HeLa Cells
  • Humans
  • Models, Biological
  • Molecular Sequence Data
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid
  • Signal Transduction
  • cdc42 GTP-Binding Protein / chemistry*
  • cdc42 GTP-Binding Protein / metabolism*


  • BNIP2 protein, human
  • Carrier Proteins
  • GTPase-Activating Proteins
  • Recombinant Proteins
  • cdc42 GTP-Binding Protein