Complex spliceosomal organization ancestral to extant eukaryotes

Mol Biol Evol. 2005 Apr;22(4):1053-66. doi: 10.1093/molbev/msi091. Epub 2005 Jan 19.


In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ancestor. We begin with the hypothesis that, similar to intron length (that appears to have increased in multicellular eukaryotes), the spliceosome has increased in complexity throughout eukaryotic evolution. However, examination of the distribution of spliceosomal components indicates that not only was a spliceosome present in the eukaryotic ancestor but it also contained most of the key components found in today's eukaryotes. All the small nuclear ribonucleoproteins (snRNPs) protein components are likely to have been present, as well as many splicing-related proteins. Both major and trans-splicing are likely to have been present, and the spliceosome had already formed links with other cellular processes such as transcription and capping. However, there is no evidence as yet to suggest that minor (U12-dependent) splicing was present in the eukaryotic ancestor. Although the last common ancestor of extant eukaryotes appears to show much of the molecular complexity seen today, we do not, from this work, infer anything of the properties of the earlier "first eukaryote."

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Eukaryotic Cells
  • Introns
  • Phylogeny
  • RNA, Messenger / genetics
  • Spliceosomes*


  • RNA, Messenger