An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs
- PMID: 15665103
- PMCID: PMC547832
- DOI: 10.1073/pnas.0406347102
An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs
Abstract
Riboswitches are highly structured RNA elements that control the expression of many bacterial genes by binding directly to small metabolite molecules with high specificity and affinity. In Bacillus subtilis, two classes of riboswitches have been described that discriminate between guanine and adenine despite an extremely high degree of homology both in their primary and secondary structure. We have identified intermolecular base triples between both purine ligands and their respective riboswitch RNAs by NMR spectroscopy. Here, specificity is mediated by the formation of a Watson-Crick base pair between the guanine ligand and a C residue or the adenine ligand and a U residue of the cognate riboswitch RNA, respectively. In addition, a second base-pairing interaction common to both riboswitch purine complexes involves a uridine residue of the RNA and the N3/N9 edge of the purine ligands. This base pairing is mediated by a previously undescribed hydrogen-bonding scheme that contributes to the affinity of the RNA-ligand interaction. The observed intermolecular hydrogen bonds between the purine ligands and the RNA rationalize the previously observed change in specificity upon a C to U mutation in the core of the purine riboswitch RNAs and the differences in the binding affinities for a number of purine analogs.
Figures
Similar articles
-
Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.Structure. 2009 Jun 10;17(6):857-68. doi: 10.1016/j.str.2009.04.009. Structure. 2009. PMID: 19523903 Free PMC article.
-
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21. J Mol Biol. 2006. PMID: 16650860
-
Adenine riboswitches and gene activation by disruption of a transcription terminator.Nat Struct Mol Biol. 2004 Jan;11(1):29-35. doi: 10.1038/nsmb710. Epub 2003 Dec 29. Nat Struct Mol Biol. 2004. PMID: 14718920
-
Purine sensing by riboswitches.Biol Cell. 2008 Jan;100(1):1-11. doi: 10.1042/BC20070088. Biol Cell. 2008. PMID: 18072940 Review.
-
[The adenine riboswitch: a new gene regulation mechanism].Med Sci (Paris). 2006 Dec;22(12):1053-9. doi: 10.1051/medsci/200622121053. Med Sci (Paris). 2006. PMID: 17156726 Review. French.
Cited by
-
A two-dimensional mutate-and-map strategy for non-coding RNA structure.Nat Chem. 2011 Oct 30;3(12):954-62. doi: 10.1038/nchem.1176. Nat Chem. 2011. PMID: 22109276 Free PMC article.
-
The "Speedy" Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA.Chemistry. 2015 Aug 10;21(33):11634-11643. doi: 10.1002/chem.201501275. Epub 2015 Jun 17. Chemistry. 2015. PMID: 26237536 Free PMC article.
-
A Riboswitch-Driven Era of New Antibacterials.Antibiotics (Basel). 2022 Sep 13;11(9):1243. doi: 10.3390/antibiotics11091243. Antibiotics (Basel). 2022. PMID: 36140022 Free PMC article. Review.
-
The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.Structure. 2011 Oct 12;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub 2011 Sep 8. Structure. 2011. PMID: 21906956 Free PMC article.
-
A switch in time: detailing the life of a riboswitch.Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):584-91. doi: 10.1016/j.bbagrm.2009.06.004. Epub 2009 Jul 9. Biochim Biophys Acta. 2009. PMID: 19595806 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
