Studies on anabolic steroids--8. GC/MS characterization of unusual seco acidic metabolites of oxymetholone in human urine

J Steroid Biochem Mol Biol. 1992 Apr;42(2):229-42. doi: 10.1016/0960-0760(92)90032-e.


One of the biotransformation routes of oxymetholone (17 beta-hydroxy-2-hydroxymethylene-17 alpha-methyl-5 alpha-androstan-3-one) in man leads to the formation of 17 beta-hydroxy-17 alpha-methyl-5 alpha-androstan-3-one (mestanolone). To demonstrate that this latter steroid may be formed by decarboxylation of an intermediate metabolite of oxymetholone bearing a 2-carboxylic group, we studied the urinary excretion of oxymetholone acidic metabolites. Five new acidic metabolites are reported here for the first time, among which four are unusual seco steroids resulting from the oxidative cleavage of the A-ring. The most abundant compound is 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,3-dioic acid 1, the cumulative excretion of which accounted for 1.52% of the dose. Three other seco diacids were produced in smaller amounts, namely 17 beta-hydroxy-17 alpha-methyl-2,3-seco-5 alpha-androstane-2,4- dicarboxylic acid 3, 17 beta-hydroxy-17 alpha-methyl-1,3-seco-5 alpha-androstane-1,3-dioic acid 4 and 17 beta-hydroxy-17 alpha-methyl-2,4-seco-5 alpha-androstane-2,4-dioic acid 5. The fifth acidic metabolite was identified as 3 alpha, 17 beta-dihydroxy-17 alpha-methyl-5 alpha-androstane-2 beta-carboxylic acid 2. The excretion in urine of these acidic metabolites suggests that the 2-hydroxymethylene group in oxymetholone is readily oxidized to yield the corresponding beta-keto acid which can be (1) decarboxylated to form mestanolone; (2) reduced at C-3 to give compound 2; and (3) further oxidized to afford the unexpected seco diacids 1, 3, 4 and 5. The identity of compounds 1 and 2 was ascertained by GC/MS and 1H and 13C-NMR analysis of reference compounds. The other metabolites were characterized by GC/MS analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Anabolic Agents / metabolism*
  • Biotransformation
  • Gas Chromatography-Mass Spectrometry
  • Humans
  • Ions
  • Isomerism
  • Male
  • Oxymetholone / urine*
  • Secosteroids / urine*


  • Anabolic Agents
  • Ions
  • Secosteroids
  • Oxymetholone