Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol

J Nat Prod. 2005 Jan;68(1):36-42. doi: 10.1021/np049702i.

Abstract

Resveratrol (1) is a polyphenolic natural product, which functions as both a mechanism-based inactivator and a co-reductant of the COX-1 peroxidase. These functions are mediated through different moieties on the molecule, namely, the m-hydroquinone moiety (mechanism-based inactivator) and the phenol moiety (co-reductant). Implicit in this bifunctionality is the notion that resveratrol is oxidized at the peroxidase active site of COX-1, resulting in the formation of two hypothetical radical species. Oxidation of the m-hydroquinone moiety can generate a hypothetical m-semiquinone radical, which is unstabilized and leads to irreversible enzyme inactivation. Oxidation of the phenol moiety can generate a hypothetical phenoxy radical, which is stabilized and leads to co-reduction during peroxidase catalysis. These two radicals have been trapped as the resveratrol dimers, cis-epsilon-viniferin (4, trapped m-semiquinone radical) and trans-delta-viniferin (5, trapped phenoxy radical), and identified by liquid chromatography (LC), absorbance spectroscopy, and LC/tandem mass spectrometry (MS(n)) methods. Methoxy-resveratrol analogues, in which either the m-hydroquinone or the phenol moiety were protected as methyl ethers, were used to confirm the proposed mechanism of viniferin production by COX-1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Benzofurans / metabolism*
  • Catalysis
  • Chromatography, High Pressure Liquid
  • Cyclooxygenase 1
  • Mass Spectrometry
  • Models, Chemical
  • Molecular Structure
  • Oxidation-Reduction
  • Prostaglandin-Endoperoxide Synthases / metabolism*
  • Resorcinols / metabolism*
  • Resveratrol
  • Stilbenes / chemistry*
  • Stilbenes / metabolism*
  • Stilbenes / pharmacology*
  • Structure-Activity Relationship

Substances

  • Benzofurans
  • Resorcinols
  • Stilbenes
  • delta-viniferin
  • epsilon-viniferin
  • Cyclooxygenase 1
  • Prostaglandin-Endoperoxide Synthases
  • Resveratrol