The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models

J Mol Biol. 1992 Apr 5;224(3):847-59. doi: 10.1016/0022-2836(92)90566-3.


The sequence of events in the refolding pathway of barnase has been analysed to search for general principles in protein folding. There appears to be a correlation between burying hydrophobic surface area and early folding events. All the regions that fold early interact extensively with the beta-sheet. These interactions involve predominantly hydrophobic interactions and the burial of very extensive hydrophobic areas in which multiple, close, hydrophobic-hydrophobic contacts are established around a central group of aliphatic residues. There is no burial of hydrophilic residues in these regions; those that are partly screened from the solvent make hydrogen bonds. All the regions or interactions that are made late in the folding pathway do not make extensive contacts with the beta-sheet. Their buried hydrophobic regions lack a central hydrophobic residue or residues around which other hydrophobic residues pack. Further, in some of these regions there is an extensive burial of hydrophilic residues. The results are consistent with one of the earlier events in protein folding being the local formation of native-like secondary structure elements driven by local hydrophobic surface burial. A possible candidate for an initiation site is a beta-hairpin between beta-strands 3 and 4 that is conserved in the microbial ribonuclease family. A comparison of structures in this family shows that those regions that can be superimposed, or have sequence homology, correspond to elements of structure that are formed and interact with each other early in the folding pathway, suggesting that some of these residues could be involved in directing the folding process. The data on barnase combined with results from other laboratories suggest the following tentative conclusions for the refolding of small monomeric proteins. (1) The refolding pathway is, at least in part, sequential and of compulsory order. (2) Secondary structure formation is driven by local hydrophobic surface burial and precedes the formation of most tertiary interactions. These elements are then stabilized and sometimes elongated by tertiary interactions. It is plausible that there are stop signals encoded in the linear sequence that prevent the elongation of isolated secondary structure elements in solution to a larger extent than is found in the folded protein. (3) Many tertiary interactions are not very constrained in the intermediate but become more and more defined as the hydrophobic cores consolidate, loop structures form and the configuration of surface residues takes place. The interactions between different elements of secondary structure are the last ones to be consolidated while the interactions within the secondary structure elements are consolidated earlier.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study

MeSH terms

  • Amino Acid Sequence
  • Bacillus / enzymology
  • Bacterial Proteins / chemistry*
  • Models, Molecular*
  • Molecular Sequence Data
  • Protein Conformation*
  • Ribonucleases / chemistry*
  • Structure-Activity Relationship


  • Bacterial Proteins
  • Ribonucleases
  • Bacillus amyloliquefaciens ribonuclease