Substrate properties of various morpholinonucleoside triphosphates in the reaction of DNA elongation catalyzed by DNA polymerase beta, reverse transcriptase of human immunodeficiency virus (HIV-1 RT), and reverse transcriptase of Moloney murine leukemia virus (M-MuLV RT) were compared. Morpholinonucleoside triphosphates were utilized by DNA polymerase beta and HIV-1 reverse transcriptase as substrates, which terminated further synthesis of DNA, but were virtually not utilized by M-MuLV reverse transcriptase. The kinetic parameters of morpholinoderivatives of cytosine (MorC) and uridine (MorU) were determined in the reaction of primer elongation catalyzed by DNA polymerase beta and HIV-1 reverse transcriptase. MorC was a more effective substrate of HIV-1 reverse transcriptase and significantly less effective substrate of DNA polymerase beta than MorU. The possible use of morpholinonucleoside triphosphates as selective inhibitors of HIV-1 reverse transcriptase is discussed.