Assembly of functional CFTR chloride channels

Annu Rev Physiol. 2005;67:701-18. doi: 10.1146/annurev.physiol.67.032003.154107.

Abstract

The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.

Publication types

  • Review

MeSH terms

  • Cystic Fibrosis Transmembrane Conductance Regulator / biosynthesis
  • Cystic Fibrosis Transmembrane Conductance Regulator / chemistry*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Humans
  • Models, Biological
  • Molecular Conformation
  • Protein Structure, Quaternary
  • Protein Structure, Tertiary

Substances

  • CFTR protein, human
  • Cystic Fibrosis Transmembrane Conductance Regulator