Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters
- PMID: 15716409
- PMCID: PMC6725926
- DOI: 10.1523/JNEUROSCI.4138-04.2005
Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters
Abstract
Glutamate transporters remove glutamate from the synaptic cleft to maintain efficient synaptic communication between neurons and to prevent glutamate concentrations from reaching neurotoxic levels. Glutamate transporters play an important role in ischemic neuronal death during stroke and have been implicated in epilepsy and amytropic lateral sclerosis. However, the molecular structure and the glutamate-uptake mechanism of these transporters are not well understood. The most recent models of glutamate transporters have three or five subunits, each with eight transmembrane domains, and one or two membrane-inserted loops. Here, using fluorescence resonance energy transfer (FRET) analysis, we have determined the relative position of the extracellular regions of these domains. Our results are consistent with a trimeric glutamate transporter with a large (>45 A) extracellular vestibule. In contrast to other transport proteins, our FRET measurements indicate that there are no large-scale motions in glutamate transporters and that glutamate uptake is accompanied by relatively small motions around the glutamate-binding sites. The large extracellular vestibule and the small-scale conformational changes could contribute to the fast kinetics predicted for glutamate transporters. Furthermore, we show that, despite the multimeric nature of glutamate transporters, the subunits function independently.
Figures
). D, Fluorescence labeling curve for A430C (•) and V273C (□) labeled with Alexa Fluor 488 C5-maleimide. Arrows indicate the amount of labeling used in the intrasubunit experiments. E, Fluorescence emission from an oocyte expressing 334C EAAT3 transporters labeled with only donor fluorophores (▪) and donor and acceptor fluorophores (▵). FRET efficiency is estimated as E = 1 - FDA/FD (Selvin, 1995). Endogenous fluorescence from an uninjected, labeled oocyte is also shown (•).
Similar articles
-
Fluorometric measurements of conformational changes in glutamate transporters.Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3951-6. doi: 10.1073/pnas.0306737101. Epub 2004 Mar 4. Proc Natl Acad Sci U S A. 2004. PMID: 15001707 Free PMC article.
-
Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3.J Biol Chem. 2007 Aug 24;282(34):24547-53. doi: 10.1074/jbc.M704087200. Epub 2007 Jun 22. J Biol Chem. 2007. PMID: 17588938
-
Functional significance of N- and C-terminus of the amino acid transporters EAAC1 and ASCT1: characterization of chimeric transporters.Biochim Biophys Acta. 2000 Aug 25;1467(2):338-46. doi: 10.1016/s0005-2736(00)00232-7. Biochim Biophys Acta. 2000. PMID: 11030592
-
Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling.J Membr Biol. 2005 Jan;203(1):1-20. doi: 10.1007/s00232-004-0731-6. J Membr Biol. 2005. PMID: 15834685 Free PMC article. Review.
-
The dual-function glutamate transporters: structure and molecular characterisation of the substrate-binding sites.Biochim Biophys Acta. 2002 Sep 10;1555(1-3):92-5. doi: 10.1016/s0005-2728(02)00260-8. Biochim Biophys Acta. 2002. PMID: 12206897 Review.
Cited by
-
Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.Biophys J. 2012 Mar 21;102(6):1331-40. doi: 10.1016/j.bpj.2012.02.028. Epub 2012 Mar 20. Biophys J. 2012. PMID: 22455916 Free PMC article.
-
Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change.Biophys J. 2010 Apr 7;98(7):1302-11. doi: 10.1016/j.bpj.2009.12.4290. Biophys J. 2010. PMID: 20371330 Free PMC article.
-
Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats.Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20752-7. doi: 10.1073/pnas.0908570106. Epub 2009 Nov 19. Proc Natl Acad Sci U S A. 2009. PMID: 19926849 Free PMC article.
-
Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1.J Gen Physiol. 2007 Apr;129(4):331-44. doi: 10.1085/jgp.200609678. J Gen Physiol. 2007. PMID: 17389249 Free PMC article.
-
Molecular dynamics simulations of the mammalian glutamate transporter EAAT3.PLoS One. 2014 Mar 18;9(3):e92089. doi: 10.1371/journal.pone.0092089. eCollection 2014. PLoS One. 2014. PMID: 24643009 Free PMC article.
References
-
- Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli Science 301: 610-615. - PubMed
-
- Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9: 293-298. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources