Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick

Dev Dyn. 2005 Apr;232(4):939-49. doi: 10.1002/dvdy.20258.


Within the hindbrain region, neural crest cell migration is organized into three streams that follow the segmentation of the neuroepithelium into distinct rhombomeric compartments. Although the streaming of neural crest cells is known to involve signals derived from the neuroepithelium, the molecular properties underlying this process are poorly understood. Here, we have mapped the expression of the signaling component of two secreted class III Semaphorins, Semaphorin (Sema) 3A and Sema 3F, at time points that correspond to neural crest cell migration within the hindbrain region of the chick. Both Semaphorins are expressed within rhombomeres at levels adjacent to crest-free mesenchyme and expression of the receptor components essential for Semaphorin activity by neural crest cells suggests a function in restricting neural crest cell migration. By using bead implantation and electroporation in ovo, we define a role for both Semaphorins in the maintenance of neural crest cell streams in proximity to the neural tube. Attenuation of Semaphorin signaling by expression of soluble Neuropilin-Fc resulted in neural crest cells invading adjacent mesenchymal territories that are normally crest-free. The loss or misguidance of specific neural crest cell populations after changes in Semaphorin signaling also affects the integration of the cranial sensory ganglia. Thus, Sema 3A and 3F, expressed and secreted by the hindbrain neuroepithelium contributes to the appropriate positioning of neural crest cells in proximity to the neural tube, a process crucial for the subsequent establishment of neuronal connectivity within the hindbrain region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Movement / physiology*
  • Chick Embryo
  • Neural Crest / cytology
  • Neural Crest / embryology*
  • Neuropilins / metabolism*
  • Rhombencephalon / cytology
  • Rhombencephalon / embryology*
  • Semaphorin-3A / metabolism*
  • Signal Transduction / physiology*


  • Neuropilins
  • Semaphorin-3A