Influence of mechanical and biological signals on gene expression in human MG-63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-beta1 on MMP-1 and MMP-3 mRNA levels

Biochem Cell Biol. 2005 Feb;83(1):96-107. doi: 10.1139/o04-124.


Biological mediators can influence the activity and differentiation of bone cells. 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) is known to induce differentiation of precursors into mature osteoblasts, and transforming growth factor-beta1 (TGF-beta1) can modulate the activity of bone cells leading to alterations in proliferation and gene expression patterns. Bone-derived cells were loaded via intermittent cyclic hydrostatic pressure (icHP) on cells under basal conditions and in the presence of 1,25-(OH)2D3 or TGF-beta1. Evaluating the effects of loading on the cells allowed for a comparison to be made between responsiveness to biomechanical and biochemical stimuli and their potential interplay. The effects of icHP on mRNA levels for the specific genes involved in bone remodelling and differentiation were measured in MG-63 cells using reverse transcription-polymerase chain reaction (RT-PCR). The mRNA levels for matrix metalloproteinase-1 and -3 (MMP-1 and MMP-3) were significantly, and uniquely, increased (p < 0.001) in cells exposed to icHP under serum-free conditions for 4-12 h. However, mRNA levels for MMP-3, but not MMP-1, were significantly enhanced in cells subjected to static hydrostatic pressure (HP). Treatment of cells with 1,25-(OH)2D3 resulted in increased (p < 0.001) mRNA levels for osteocalcin and decreased (p < 0.001) mRNA levels for both MMP-1 and MMP-3. In cells exposed to icHP and 1,25-(OH)2D3, the mRNA levels for both MMP-1 and MMP-3 were elevated (p < 0.001) compared with hormone alone, but not to the same degree (p < 0.01) as cells subjected to icHP alone. Addition of TGF-beta1 to cells led to increases in cell proliferation and expression of collagen I, as well as decreases in expression of osteocalcin and MMP-1 and MMP-3. Exposure of cells to icHP and TGF-beta1 again led to unique and significant increases in expression of MMP-1 and MMP-3. No changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or any of the other 9 genes assessed, including those for MMP-2 and MMP-13, were detected under any of the conditions described. Therefore, icHP can induce alterations in mRNA levels for a specific subset of genes in both premature and mature osteoblasts. Such stimuli can modulate the impact of potent biological mediators in defining patterns of gene expression by bone cells and potentially modify function in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Biomechanical Phenomena
  • Cell Line, Tumor
  • Cholecalciferol / pharmacology*
  • Gene Expression Regulation / drug effects*
  • Humans
  • Male
  • Matrix Metalloproteinase 1 / genetics*
  • Matrix Metalloproteinase 3 / genetics*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Transforming Growth Factor beta / pharmacology*
  • Transforming Growth Factor beta1


  • RNA, Messenger
  • TGFB1 protein, human
  • Transforming Growth Factor beta
  • Transforming Growth Factor beta1
  • Cholecalciferol
  • Matrix Metalloproteinase 3
  • Matrix Metalloproteinase 1