Hearing in laboratory animals is a topic that traditionally has been the domain of the auditory researcher. However, hearing loss and exposure to various environmental sounds can lead to changes in multiple organ systems, making what laboratory animals hear of consequence for researchers beyond those solely interested in hearing. For example, several inbred mouse strains commonly used in biomedical research (e.g., C57BL/6, DBA/2, and BALB/c) experience a genetically determined, progressive hearing loss that can lead to secondary changes in systems ranging from brain neurochemistry to social behavior. Both researchers and laboratory animal facility personnel should be aware of both strain and species differences in hearing in order to minimize potentially confounding variables in their research and to aid in the interpretation of data. Independent of genetic differences, acoustic noise levels in laboratory animal facilities can have considerable effects on the inhabitants. A large body of literature describes the nonauditory impact of noise on the biology and behavior of various strains and species of laboratory animals. The broad systemic effects of noise exposure include changes in endocrine and cardiovascular function, sleep-wake cycle disturbances, seizure susceptibility, and an array of behavioral changes. These changes are determined partly by species and strain; partly by noise intensity level, duration, predictability, and other characteristics of the sound; and partly by animal history and exposure context. This article reviews some of the basic strain and species differences in hearing and outlines how the acoustic environment affects different mammals.