CATERPILLER: a novel gene family important in immunity, cell death, and diseases

Annu Rev Immunol. 2005;23:387-414. doi: 10.1146/annurev.immunol.23.021704.115616.


The newly discovered CATERPILLER (CLR) gene family encodes proteins with a variable but limited number of N-terminal domains, followed by a nucleotide-binding domain (NBD) and leucine-rich repeats (LRR). The N-terminal domain consists of transactivation, CARD, Pyrin, or BIR domains, with a minority containing undefined domains. These proteins are remarkably similar in structure to the TIR-NBD-LRR and CC-NBD-LRR disease resistance (R) proteins that mediate immune responses in plants. The NBD-LRR architecture is conserved in plants and vertebrates, but only remnants are found in worms and flies. The CLRs regulate inflammatory and apoptotic responses, and some act as sensors that detect pathogen products. Several CLR genes have been genetically linked to susceptibility to immunologic disorders. We describe prominent family members, including CIITA, CARD4/NOD1, NOD2/CARD15, CIAS1, CARD7/NALP1, and NAIP, in more detail. We also discuss implied roles of these proteins in diversifying immune detection and in providing a check-and-balance during inflammation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Death / genetics
  • Disease
  • Evolution, Molecular
  • Genes, Plant
  • Humans
  • Immunity, Innate / genetics*
  • Mammals / genetics
  • Mammals / immunology
  • Multigene Family*
  • Mutation
  • Plant Diseases / genetics