Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products

Eur J Haematol. 2005 Apr;74(4):324-32. doi: 10.1111/j.1600-0609.2004.00352.x.


In falciparum malaria, both infected and uninfected red cells have structural and functional alterations. To investigate the mechanisms of these modifications, we studied the effects of two Plasmodium falciparum haem products (haematin and malaria pigment in the synthetic form beta-haematin) on isolated human red blood cells (RBCs) and purified RBC ghosts. A dose- and time-dependent incorporation of haematin into RBC ghosts and intact cells was observed, which was in proportion to the extent of haematin- induced haemolysis. RBCs pre-incubated with haematin were more sensitive to haemolysis induced by hypotonic shock, low pH, H2O2 or haematin itself. Haemolysis was not related to membrane lipid peroxidation and only partially to oxidation of protein sulphydryl groups and it could not be prevented by scavengers of lipid peroxidation or hydroperoxide groups. N-acetylcysteine partly protected the oxidation of SH groups and significantly reduced haemolysis. In contrast, beta-haematin was neither haemolytic nor oxidative towards protein sulphydryl groups. Beta-haematin did destabilise the RBC membrane, but to a lesser extent than haematin, inducing increased susceptibility to lysis caused by hypotonic medium, H2O2 or haematin. This study suggests that the destabilising effect of haematin and, to a much less extent, beta-haematin on the RBC membrane does not result from oxidative damage of membrane lipids but from direct binding or incorporation which may affect the reciprocal interactions between the membrane and cytoskeleton proteins. These changes could contribute to the reduced red cell deformability associated with severe malaria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Erythrocyte Membrane / drug effects
  • Erythrocyte Membrane / metabolism
  • Erythrocyte Membrane / parasitology
  • Erythrocytes / drug effects
  • Erythrocytes / metabolism
  • Erythrocytes / parasitology*
  • Glutathione / metabolism
  • Hemeproteins / toxicity
  • Hemin / toxicity
  • Hemolysis / drug effects
  • Hemorheology
  • Humans
  • In Vitro Techniques
  • Lipid Peroxidation / drug effects
  • Membrane Proteins / metabolism
  • Oxidation-Reduction
  • Plasmodium falciparum / pathogenicity*


  • Antioxidants
  • Hemeproteins
  • Membrane Proteins
  • hemozoin
  • Hemin
  • Glutathione