Mechanism of the maturation process of SARS-CoV 3CL protease
- PMID: 15788388
- PMCID: PMC8062786
- DOI: 10.1074/jbc.M502577200
Mechanism of the maturation process of SARS-CoV 3CL protease
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CL(pro)) to cleave the virus-encoded polyproteins. We report here that the 3CL(pro) containing additional N- and/or C-terminal segments of the polyprotein sequences undergoes autoprocessing and yields the mature protease in vitro. The dimeric three-dimensional structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. The P1 pocket of the active site binds the Gln side chain specifically, and the P2 and P4 sites are clustered together to accommodate large hydrophobic side chains. The tagged C145A mutant protein served as a substrate for the wild-type protease, and the N terminus was first digested (55-fold faster) at the Gln(-1)-Ser1 site followed by the C-terminal cleavage at the Gln306-Gly307 site. Analytical ultracentrifuge of the quaternary structures of the tagged and mature proteases reveals the remarkably tighter dimer formation for the mature enzyme (K(d) = 0.35 nm) than for the mutant (C145A) containing 10 extra N-terminal (K(d) = 17.2 nM) or C-terminal amino acids (K(d) = 5.6 nM). The data indicate that immature 3CL(pro) can form dimer enabling it to undergo autoprocessing to yield the mature enzyme, which further serves as a seed for facilitated maturation. Taken together, this study provides insights into the maturation process of the SARS 3CL(pro) from the polyprotein and design of new structure-based inhibitors.
Figures
Similar articles
-
Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase.J Biol Chem. 2010 Sep 3;285(36):28134-40. doi: 10.1074/jbc.M109.095851. Epub 2010 May 20. J Biol Chem. 2010. PMID: 20489209 Free PMC article.
-
Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.FEBS J. 2013 May;280(9):2002-13. doi: 10.1111/febs.12222. Epub 2013 Mar 27. FEBS J. 2013. PMID: 23452147 Free PMC article.
-
SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity.Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12997-13002. doi: 10.1073/pnas.1601327113. Epub 2016 Oct 31. Proc Natl Acad Sci U S A. 2016. PMID: 27799534 Free PMC article.
-
Activation and maturation of SARS-CoV main protease.Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Protein Cell. 2011. PMID: 21533772 Free PMC article. Review.
-
Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase.Curr Pharm Des. 2006;12(35):4555-64. doi: 10.2174/138161206779010396. Curr Pharm Des. 2006. PMID: 17168761 Review.
Cited by
-
Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites.Cell Host Microbe. 2022 Oct 12;30(10):1354-1362.e6. doi: 10.1016/j.chom.2022.08.003. Epub 2022 Aug 11. Cell Host Microbe. 2022. PMID: 36029764 Free PMC article.
-
Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors.Commun Biol. 2023 Nov 13;6(1):1159. doi: 10.1038/s42003-023-05469-8. Commun Biol. 2023. PMID: 37957287 Free PMC article.
-
X-Ray Structure and Inhibition of 3C-like Protease from Porcine Epidemic Diarrhea Virus.Sci Rep. 2016 May 13;6:25961. doi: 10.1038/srep25961. Sci Rep. 2016. PMID: 27173881 Free PMC article.
-
Correlation between dissociation and catalysis of SARS-CoV main protease.Arch Biochem Biophys. 2008 Apr 1;472(1):34-42. doi: 10.1016/j.abb.2008.01.023. Epub 2008 Feb 5. Arch Biochem Biophys. 2008. PMID: 18275836 Free PMC article.
-
Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site.Nat Commun. 2020 Nov 18;11(1):5877. doi: 10.1038/s41467-020-19662-4. Nat Commun. 2020. PMID: 33208735 Free PMC article.
References
-
- Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. N. Engl. J. Med. 2003;348:1967–1976. - PubMed
-
- Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. N. Engl. J. Med. 2003;348:1953–1966. - PubMed
-
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. Science. 2003;300:1399–1404. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
