The probability of parallel evolution

Evolution. 2005 Jan;59(1):216-20.

Abstract

How often will natural selection drive parallel evolution at the DNA sequence level? More precisely, what is the probability that selection will cause two populations that live in identical environments to substitute the same beneficial mutation? Here I show that, under fairly general conditions, the answer is simple: if a wild-type sequence can mutate to n different beneficial mutations, replicate populations will on average fix the same mutation with probability P = 2/(n + 1). This probability, which is derived using extreme value theory, is independent of most biological details, including the length of the gene in question and the precise distribution of fitness effects among alleles. I conclude that the probability of parallel evolution under natural selection is nearly twice as large as that under neutrality.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Biological
  • Data Interpretation, Statistical
  • Evolution, Molecular*
  • Genetics, Population
  • Models, Genetic*
  • Mutation
  • Probability
  • Selection, Genetic*