Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
- PMID: 15814840
- PMCID: PMC1142434
- DOI: 10.1091/mbc.e05-01-0073
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
Abstract
Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from blastospores (round budding cells) to filaments (elongated cells attached end-to-end). This transition, which is induced upon exposure of C. albicans cells to a number of host conditions, including serum and body temperature (37 degrees C), is required for virulence. Using whole-genome DNA microarray analysis, we describe 61 genes that are significantly induced (> or =2-fold) during the blastospore to filament transition that takes place in response to exposure to serum and 37 degrees C. We next show that approximately half of these genes are transcriptionally repressed in the blastospore state by three transcriptional repressors, Rfg1, Nrg1, and Tup1. We conclude that the relief of this transcriptional repression plays a key role in bringing the C. albicans filamentous growth program into play, and we describe the framework of this transcriptional circuit.
Figures
Similar articles
-
Control of filament formation in Candida albicans by the transcriptional repressor TUP1.Science. 1997 Jul 4;277(5322):105-9. doi: 10.1126/science.277.5322.105. Science. 1997. PMID: 9204892
-
NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction.EMBO J. 2001 Sep 3;20(17):4753-61. doi: 10.1093/emboj/20.17.4753. EMBO J. 2001. PMID: 11532939 Free PMC article.
-
Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans.mBio. 2020 Apr 28;11(2):e00206-20. doi: 10.1128/mBio.00206-20. mBio. 2020. PMID: 32345638 Free PMC article.
-
Dimorphism and virulence in Candida albicans.Curr Opin Microbiol. 1998 Dec;1(6):687-92. doi: 10.1016/s1369-5274(98)80116-1. Curr Opin Microbiol. 1998. PMID: 10066539 Review.
-
Candida albicans hyphal initiation and elongation.Trends Microbiol. 2014 Dec;22(12):707-14. doi: 10.1016/j.tim.2014.09.001. Epub 2014 Sep 25. Trends Microbiol. 2014. PMID: 25262420 Free PMC article. Review.
Cited by
-
Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation.Genetics. 2024 Oct 7;228(2):iyae122. doi: 10.1093/genetics/iyae122. Genetics. 2024. PMID: 39239926 Review.
-
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul. PLoS Pathog. 2024. PMID: 39078851 Free PMC article.
-
Mar1, a high mobility group box protein, regulates n-alkane adsorption and cell morphology of the dimorphic yeast Yarrowia lipolytica.Appl Environ Microbiol. 2024 Aug 21;90(8):e0054624. doi: 10.1128/aem.00546-24. Epub 2024 Jul 26. Appl Environ Microbiol. 2024. PMID: 39058021
-
Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo.mBio. 2024 Aug 14;15(8):e0124924. doi: 10.1128/mbio.01249-24. Epub 2024 Jul 1. mBio. 2024. PMID: 38949302 Free PMC article.
-
Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion.Open Biol. 2024 May;14(5):230315. doi: 10.1098/rsob.230315. Epub 2024 May 29. Open Biol. 2024. PMID: 38806144 Free PMC article.
References
-
- Bramley, T. A., Menzies, G. S., Williams, R. J., Kinsman, O. S., and Adams, D. J. (1991). Binding sites for LH in Candida albicans: comparison with the mammalian corpus luteum LH receptor. J. Endocrinol. 130, 177-190. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
