Since Hick's original description, many subsequent studies have confirmed the logarithmic relationship that exists between response time and the number of alternatives (NA) for a choice response. In the present study a novel paradigm was used to quantify saccade response time as a function of NA. Normal subjects were required to make a saccade to the remembered location of a visual target whose color was specified by a centrally located cue. The paradigm thus required a stimulus-response transformation similar to that used by Hick. The results show that, when such a transformation was required, a logarithmic relationship was found for saccadic response time. The use of a color-to-location paradigm to study saccade choice response time produced an unexpected additional result that may provide insight into the neural organization of the saccadic system. When the number of alternative choice responses was large (4 or 8), subjects frequently made a two-saccade response instead of a single saccade to the correct location. The first movement in such a sequence was in the correct direction, but was hypometric. A second movement then followed which moved the eyes onto the correct location. These results suggest dynamic dissociations in the mechanisms underlying the triggering of saccades and the specification of their metrics.