Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease
- PMID: 15831489
- PMCID: PMC8060872
- DOI: 10.1074/jbc.M502556200
Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease
Abstract
The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like fold that consists of two structural domains and constitutes the catalytic machinery; the other is the C-terminal helical domain, which has an unclear function and is not found in other RNA virus main proteases. To understand the functional roles of the two structural parts of the SARS-CoV main protease, we generated the full-length of this enzyme as well as several terminally truncated forms, different from each other only by the number of amino acid residues at the C- or N-terminal regions. The quaternary structure and K(d) value of the protease were analyzed by analytical ultracentrifugation. The results showed that the N-terminal 1-3 amino acid-truncated protease maintains 76% of enzyme activity and that the major form is a dimer, as in the wild type. However, the amino acids 1-4-truncated protease showed the major form to be a monomer and had little enzyme activity. As a result, the fourth amino acid seemed to have a powerful effect on the quaternary structure and activity of this protease. The last C-terminal helically truncated protease also exhibited a greater tendency to form monomer and showed little activity. We concluded that both the C- and the N-terminal regions influence the dimerization and enzyme activity of the SARS-CoV main protease.
Figures
Similar articles
-
Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors.J Biol Chem. 2004 Jun 4;279(23):24765-73. doi: 10.1074/jbc.M311744200. Epub 2004 Mar 22. J Biol Chem. 2004. PMID: 15037623 Free PMC article.
-
Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: crystal structure with molecular dynamics simulations.J Biol Chem. 2008 Jan 4;283(1):554-564. doi: 10.1074/jbc.M705240200. Epub 2007 Oct 31. J Biol Chem. 2008. PMID: 17977841 Free PMC article.
-
The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain.FEBS J. 2006 Mar;273(5):1035-45. doi: 10.1111/j.1742-4658.2006.05130.x. FEBS J. 2006. PMID: 16478476 Free PMC article.
-
Activation and maturation of SARS-CoV main protease.Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Protein Cell. 2011. PMID: 21533772 Free PMC article. Review.
-
The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.Antiviral Res. 2015 Mar;115:21-38. doi: 10.1016/j.antiviral.2014.12.015. Epub 2014 Dec 29. Antiviral Res. 2015. PMID: 25554382 Free PMC article. Review.
Cited by
-
Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease.Chem Sci. 2020 Nov 26;12(4):1513-1527. doi: 10.1039/d0sc04942e. eCollection 2021 Jan 28. Chem Sci. 2020. PMID: 35356437 Free PMC article.
-
A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study.Mol Divers. 2022 Oct;26(5):2631-2645. doi: 10.1007/s11030-021-10355-8. Epub 2022 Jan 10. Mol Divers. 2022. PMID: 35001230 Free PMC article.
-
Identification of novel small-molecule inhibitors of SARS-CoV-2 by chemical genetics.Acta Pharm Sin B. 2024 Sep;14(9):4028-4044. doi: 10.1016/j.apsb.2024.05.026. Epub 2024 May 31. Acta Pharm Sin B. 2024. PMID: 39309487 Free PMC article.
-
Identification and characterization of alternative sites and molecular probes for SARS-CoV-2 target proteins.Front Chem. 2022 Oct 31;10:1017394. doi: 10.3389/fchem.2022.1017394. eCollection 2022. Front Chem. 2022. PMID: 36385993 Free PMC article.
-
Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease.Protein Cell. 2010 Apr;1(4):371-383. doi: 10.1007/s13238-010-0044-8. Epub 2010 May 8. Protein Cell. 2010. PMID: 21203949 Free PMC article.
References
-
- Leng Q., Bentwich Z. N. Engl. J. Med. 2003;349:709. - PubMed
-
- Kuiken T., Fouchier R.A., Schutten M., Rimmelzwaan G.F., van Amerongen G., van Riel D., Laman J.D., de Jong T., van Doornum G., Lim W., Ling A.E., Chan P.K., Tam J.S., Zambon M.C., Gopal R., Drosten C., van der Werf S., Escriou N., Manuguerra J.C., Stohr K., Peiris J.S., Osterhaus A.D. Lancet. 2003;362:263–270. - PMC - PubMed
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Science. 2003;300:1394–1399. - PubMed
-
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. Science. 2003;300:1399–1404. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
