Polymerase chain reaction method to identify Down syndrome model segmentally trisomic mice

Anal Biochem. 2005 May 15;340(2):213-9. doi: 10.1016/j.ab.2005.02.002.

Abstract

The Ts65Dn segmentally trisomic mouse possesses an extra copy of a segment of chromosome 16 translocated to chromosome 17. This segment includes the mouse homolog of the Down syndrome critical region of human chromosome 21. The Ts65Dn mouse serves as a useful model to study the developmental regulation of the Down syndrome phenotype. To identify mice bearing the extra chromosome 16 segment, we developed a polymerase chain reaction (PCR) method as an alternative to karyotyping. Conditions under which segments of genes on chromosome 16 (App and Dyrk1a) could be coamplified with a control gene on chromosome 8 (Acta1) so that the yield of each PCR product was proportional to the amount of its template were determined. The amplification products were resolved and quantified by two methods. In the first method, the DNA segments were separated by agarose gel electrophoresis and stained with ethidium bromide. The fluorescence yields were quantified by photodensitometry. In the second method, the fragments were resolved and quantified by the high-performance DNA analysis system, a high-throughput, multichannel, microcapillary electrophoresis instrument. The results of both methods were within 10% of the expected ratio of 1.5. Application of these methods has allowed the maintenance of a Ts65Dn breeding colony through six generations and should permit the precise and efficient identification of trisomic and disomic animals at any developmental stage with minimally invasive procedures.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chromosomes, Mammalian / genetics
  • Disease Models, Animal*
  • Down Syndrome / genetics*
  • Electrophoresis, Capillary
  • Female
  • In Situ Hybridization, Fluorescence
  • Karyotyping
  • Male
  • Mice
  • Polymerase Chain Reaction / methods*
  • Trisomy / genetics*