Donor marker infidelity in transgenic hematopoietic stem cells

Stem Cells. 2005 May;23(5):638-43. doi: 10.1634/stemcells.2004-0325.


Transgenic marking approaches are increasingly used to evaluate the developmental potential of stem cells. However, cell fate mapping studies using different transgenic marking systems have produced conflicting results. These disparate findings may be due in part to the infidelity of donor marker gene expression. Analysis of hematopoietic stem cells (c-Kit+, Sca-1+, lineage marker- [KSL]) from a transgenic mouse (1Osb) engineered to ubiquitously express the enhanced green fluorescent protein (EGFP) reveals two distinct populations. Forty percent of KSL cells demonstrate intermediate levels of EGFP fluorescence and differentiate into subpopulations of B cells, T cells, and myeloid cells that do not express EGFP. By contrast, progeny of the remaining 60% of KSL cells are almost exclusively EGFP bright. Long-term multilineage hematopoietic reconstitution and serial transplantation experiments show that these differences in EGFP are a property of self-renewing stem cells. Furthermore, both the transgene integration site and the activation status of a cell are important determinants of EGFP expression. These results indicate that a combination of donor cell markers is required to reliably track the full differentiation potential of transgenic stem cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, Differentiation / analysis*
  • Cell Differentiation*
  • Cell Lineage*
  • Hematopoietic Stem Cell Transplantation*
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Mice
  • Mice, Transgenic


  • Antigens, Differentiation