Oncogenic Ras increases sensitivity of colon cancer cells to 5-FU-induced apoptosis

Oncogene. 2005 Jun 2;24(24):3932-41. doi: 10.1038/sj.onc.1208552.

Abstract

Despite the fact that objective response rates to 5-FU are as low as 20%, 5-FU remains the most commonly used drug for the treatment of colorectal cancer. The lack of understanding of resistance to 5-FU, therefore, remains a significant impediment in maximizing its efficacy. We used intestinal epithelial cells with an inducible K-RasV12 to demonstrate that expression of oncogenic Ras promotes cell death upon 5-FU treatment. Accordingly, transient expression of the mutant RasV12, but not the WT Ras, enhanced 5-FU-induced apoptosis in 293T cells. Consistent with these data, we showed that targeted deletion of the mutant Ras allele in the HCT116 colon cancer cell line protected cells from 5-FU-induced apoptosis. Using isogenic colon cancer cell lines that differ only by the presence of the mutant Ras allele, HCT116 and Hke-3 cells, we demonstrated that signaling by oncogenic Ras promotes both accumulation of p53 and its phosphorylation on serine15 in response to 5-FU, a situation that favors apoptosis over growth arrest. However, despite the differential induction of p53 in HCT116 and Hke-3 cells, the expression of Puma, a gene with an important role in p53-dependent apoptosis, was not affected by Ras signaling. In contrast, we showed that Ras interferes with 5-FU-induced expression of gelsolin, a protein with known antiapoptotic activity. We ascertained the role of gelsolin in 5-FU-induced apoptosis by demonstrating that silencing of gelsolin expression through RNAi sensitized cells to 5-FU-induced apoptosis and that re-expression of gelsolin in cells harboring mutant Ras protected cells from 5-FU-induced apoptosis. These data therefore demonstrate that Ras mutations increase sensitivity to 5-FU-induced apoptosis at least in part through the negative regulation of gelsolin expression. Our data indicate that Ras mutations promote apoptosis in response to 5-FU treatment and imply that tumors with Ras mutations and/or reduced expression of gelsolin may show enhanced apoptosis in response to 5-FU also in vivo.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / drug effects*
  • Caspase 3
  • Caspases / metabolism
  • Cell Line, Tumor
  • Colonic Neoplasms / pathology*
  • Dose-Response Relationship, Drug
  • Fluorouracil / toxicity*
  • Gelsolin / pharmacology
  • Humans
  • Kinetics

Substances

  • Gelsolin
  • CASP3 protein, human
  • Caspase 3
  • Caspases
  • Fluorouracil