Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 1;280(26):24339-46.
doi: 10.1074/jbc.M412442200. Epub 2005 Apr 27.

Regulation of the G(2)/M transition in Xenopus oocytes by the cAMP-dependent protein kinase

Affiliations
Free article

Regulation of the G(2)/M transition in Xenopus oocytes by the cAMP-dependent protein kinase

Patrick A Eyers et al. J Biol Chem. .
Free article

Abstract

Vertebrate oocytes are arrested in G(2) phase of the cell cycle at the prophase border of meiosis I. Progesterone treatment of Xenopus oocytes releases the G(2) block and promotes entry into the M phases of meiosis I and II. Substantial evidence indicates that the release of the G(2) arrest requires a decrease in cAMP and reduced activity of the cAMP-dependent protein kinase (PKAc). It has been reported and we confirm here that microinjection of either wild type or kinase-dead K72R PKAc inhibits progesterone-dependent release of the G(2) arrest with equal potency and that inhibition can be reversed by a second injection of the heat-stable inhibitor of PKAc, PKI. However, a mutant enzyme predicted to be completely kinase-dead from the crystal structure of PKAc, K72H PKAc, was much less inhibitory when carrying additional mutations that block interaction with either type I or type II regulatory subunit. Moreover, inhibition by K72H PKAc was reversed by PKI at a 30-fold lower concentration and with more rapid kinetics compared with wild type PKAc. K72R PKAc was found to have low but detectable activity after incubation in an oocyte extract. These results indicate that inhibition of the progesterone-dependent G(2)/M transition in oocytes after microinjection of dead PKAc reflects either low residual activity or binding to regulatory subunits with a resulting net increase in the level of endogenous wild type PKAc. Consistent with this hypothesis, the induction of mitosis in Xenopus egg extracts by the addition of cyclin B was blocked by wild type PKAc but not by K72H PKAc. The identification of substrates for PKAc that maintain cell cycle arrest in G(2) remains an important goal for future work.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources