The agglutinin isolated from the seeds of Maclura pomifera (MPA) recognizes a mucin-type disaccharide sequence, Galbeta1-->3GalNAc (T) on a human erythrocyte membrane. We have utilized the enzyme-linked lectinosorbent assay (ELLSA) and inhibition assay to more systematically analyze the carbohydrate specificity of MPA with glyco-recognition factors and mammalian Gal/GalNAc structural units in lectin-glycoform interactions. From the results, it is concluded that the high densities of polyvalent GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3GalNAcalpha1-->Ser/Thr (T(alpha)) glycotopes in macromolecules are the most critical factors for MPA binding, being on a nanogram basis 2.0 x 10(5), 4.6 x 10(4) and 3.9 x 10(4) more active than monovalent Gal, monomeric T and Tn glycotope, respectively. Other carbohydrate structural units in mammalian glycoconjugates, such as human blood group Sd (a+) related disaccharide (GalNAcbeta1-->4Gal) and Pk/P1 active disaccharide (Galalpha1-->4Gal) were inactive. These results demonstrate that the configurations of carbon-4 and carbon-2 are essential for MPA binding and establish the importance of affinity enhancement by high-density polyvalencies of Tn/T glycotopes in MPA-glycan interactions. The overall binding profile of MPA can be defined in decreasing order as high density of polyvalent Tn/T(alpha) (M.W. > 4.0 x 10(4)) >> Tn-containing glycopeptides (M.W. < 3.0 x 10(3)) > monomeric T/Tn and P (GalNAcbeta1-->3Gal) > GalNAc > Gal >> Man, L: ARA: , D: Fuc and Glc (inactive). Our findings should aid in the selection of this lectin for elucidating functions of carbohydrate chains in life processes and for applications in the biomedical sciences.