Degradation of azo dyes by laccase and ultrasound treatment

Appl Environ Microbiol. 2005 May;71(5):2600-7. doi: 10.1128/AEM.71.5.2600-2607.2005.

Abstract

The goal of this work was to investigate the decomposition of azo dyes by oxidative methods, such as laccase and ultrasound treatments. Each of these methods has strong and feeble sides. The laccase treatment showed high decolorization rates but cannot degrade all investigated dyes (reactive dyes), and high anionic strength led to enzyme deactivation. Ultrasound treatment can decolorize all tested dyes after 3 h at a high energy input, and prolonged sonication leads to nontoxic ionic species, which was demonstrated by ion chromatography and toxicity assays. For the first time, it was shown that a combination of laccase and ultrasound treatments can have synergistic effects, which was shown by higher degradation rates. Bulk light absorption and ion-pairing high-performance liquid chromatography (IP-HPLC) were used for process monitoring, while with reversed-phase HPLC, a lower number of intermediates than expected by IP-HPLC was found. Liquid chromatography-mass spectrometry indicated that both acid orange dyes lead to a common end product due to laccase treatment. Acid Orange 52 is demethylated by laccase and ultrasound treatment. Further results confirmed that the main effect of ultrasound is based on *OH attack on the dye molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Azo Compounds / metabolism*
  • Chromatography, High Pressure Liquid
  • Coloring Agents / metabolism*
  • Laccase / pharmacology*
  • Mass Spectrometry
  • Oxidation-Reduction
  • Ultrasonics*

Substances

  • Azo Compounds
  • Coloring Agents
  • Laccase