Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia

Bone. 2005 Jun;36(6):1030-8. doi: 10.1016/j.bone.2005.02.013.

Abstract

Adaptation to mechanical loading has been studied extensively in cortical, but not cancellous bone. However, corticocancellous sites are more relevant to osteoporosis and related fracture risk of the hip and spine. We tested the hypotheses that adaptation in a long bone would be greater at cancellous than cortical sites and would depend on the term of daily in vivo cyclic axial loading. We applied compressive loads to the adolescent, 10-week old, male C57BL/6 mouse tibia to examine the skeletal response immediately prior to attainment of peak bone mass. Adaptation was quantified at the completion of either 2-week (n = 8) or 6-week (n = 12) loading terms by directly comparing volumetric bone mineral content between loaded and contralateral limbs by microcomputed tomography. The increase in mineral content was site specific with a greater response found in the corticocancellous proximal metaphysis (14%) than the cortical mid-shaft (2%) after 6 weeks of loading. Furthermore, bone volume fraction and average trabecular thickness of cancellous bone in the proximal tibia increased after 6 weeks by 15% and 12% respectively. Diaphyseal response was only evident proximal to the mid-shaft as indicated by an 8% increase in maximum principal moment of inertia. Both loading terms produced similar results for mineral content, volume fraction, and moments of inertia. Our finding that non-invasive loading increases the bone volume and fraction at a corticocancellous site by as much as 15% motivates exploring the use of mechanical loading to attain greater peak bone mass and inhibit osteoporosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Body Weight
  • Bone Density / physiology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Tibia / anatomy & histology
  • Tibia / chemistry
  • Tibia / physiology*
  • Time Factors
  • Tomography, X-Ray Computed
  • Weight-Bearing / physiology*