Prefrontal cortex and flexible cognitive control: rules without symbols

Proc Natl Acad Sci U S A. 2005 May 17;102(20):7338-43. doi: 10.1073/pnas.0502455102. Epub 2005 May 9.

Abstract

Human cognitive control is uniquely flexible and has been shown to depend on prefrontal cortex (PFC). But exactly how the biological mechanisms of the PFC support flexible cognitive control remains a profound mystery. Existing theoretical models have posited powerful task-specific PFC representations, but not how these develop. We show how this can occur when a set of PFC-specific neural mechanisms interact with breadth of experience to self organize abstract rule-like PFC representations that support flexible generalization in novel tasks. The same model is shown to apply to benchmark PFC tasks (Stroop and Wisconsin card sorting), accurately simulating the behavior of neurologically intact and frontally damaged people.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cognition / physiology*
  • Computer Simulation
  • Generalization, Psychological / physiology*
  • Humans
  • Models, Theoretical*
  • Prefrontal Cortex / physiology*
  • Task Performance and Analysis