Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries

Physiol Meas. 2005 Aug;26(4):477-88. doi: 10.1088/0967-3334/26/4/013. Epub 2005 Apr 29.


Knowledge of normal cerebrovascular volumetric flow rate (VFR) dynamics is of interest for establishing baselines, and for providing input data to cerebrovascular model studies. Retrospectively gated phase contrast magnetic resonance imaging was used to measure time-resolved VFR waveforms from the two internal carotid arteries (ICA) and two vertebral arteries (VA) of 17 young, normal volunteers (16M:1F) at rest in a supine posture. After normalizing each waveform to its respective cycle-averaged VFR, the timing and amplitude of feature points from the individual waveforms were averaged together to produce archetypal ICA and VA waveform shapes. Despite significant inter-individual differences in cycle-averaged VFR within the ICA compared to VA (275+/-52 versus 91+/-18 mL min-1), the respective waveform shapes were qualitatively similar overall. The VA waveform shape did, however, exhibit significantly higher amplitudes (e.g., peak:average VFR of 1.78+/-0.30 versus 1.66+/-0.16; p<0.05) and significantly higher variability both between and within subjects. A significant correlation was observed between peak and cycle-averaged VFR, suggesting that the representative waveform shapes presented here-when scaled by an individual's cycle-averaged VFR-may be used to characterize normal ICA and VA flow rate dynamics. This capability may be of particular utility for studies where cerebrovascular flow dynamics are required, but only average flow rates are available.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Blood Flow Velocity / physiology*
  • Blood Volume / physiology
  • Carotid Arteries / anatomy & histology
  • Carotid Arteries / physiology*
  • Cerebrovascular Circulation / physiology*
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Reference Values
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Vertebral Artery / anatomy & histology
  • Vertebral Artery / physiology*