Metabolic energy and muscular activity required for leg swing in running

J Appl Physiol (1985). 2005 Jun;98(6):2126-31. doi: 10.1152/japplphysiol.00511.2004.

Abstract

The metabolic cost of leg swing in running is highly controversial. We investigated the cost of initiating and propagating leg swing at a moderate running speed and some of the muscular actions involved. We constructed an external swing assist (ESA) device that applied small anterior pulling forces to each foot during the first part of the swing phase. Subjects ran on a treadmill at 3.0 m/s normally and with ESA forces up to 4% body weight. With the greatest ESA force, net metabolic rate was 20.5% less than during normal running. Thus we infer that the metabolic cost of initiating and propagating leg swing comprises approximately 20% of the net cost of normal running. Even with the greatest ESA, mean electromyograph (mEMG) of the medial gastrocnemius and soleus muscles during later portions of stance phase did not change significantly compared with normal running, indicating that these muscles are not responsible for the initiation of leg swing. However, with ESA, rectus femoris mEMG during the early portions of swing phase was as much as 74% less than during normal running, confirming that it is responsible for the propagation of leg swing.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Electromyography / methods
  • Energy Metabolism / physiology*
  • Female
  • Humans
  • Leg / physiology*
  • Male
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / physiology*
  • Physical Exertion / physiology*
  • Physical Stimulation / methods*
  • Running / physiology*
  • Stress, Mechanical