Background information: Centrosome movements at the onset of mitosis result from a balance between the pulling and pushing forces mediated by microtubules. The structural stability of the centrosome core structure, the centriole pair, is correlated with a heavy polyglutamylation of centriole tubulin.
Results: Using HeLa cells stably expressing centrin-green fluorescent protein as a centriole marker, we monitored the effect of microinjecting an anti-(polyglutamylated tubulin) monoclonal antibody, GT335, in G1/S or G2 cells. In contrast with the slow effect of the monoclonal antibody GT335 during interphase, a dramatic and rapid centrosome fragmentation occurred in cells microinjected in G2 that was both Eg5- and dynein-dependent. Inhibition of either one of these two motors significantly decreased the scattering of centrosome fragments, and inhibition of centrosome segregation by impairing microtubule dynamics abolished centrosome fragmentation.
Conclusions: Our results demonstrate that the compact structure of the mitotic centrosome is capable of absorbing most of the pulling and pushing forces during G2/M transition and suggest that centrosomes could act as mechanosensors integrating tensions during cell division.