Simulations of the formation, evolution and clustering of galaxies and quasars
- PMID: 15931216
- DOI: 10.1038/nature03597
Simulations of the formation, evolution and clustering of galaxies and quasars
Abstract
The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,160(3) particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
Comment in
-
Cosmology: digitizing the universe.Nature. 2005 Jun 2;435(7042):572-3. doi: 10.1038/435572a. Nature. 2005. PMID: 15931201 No abstract available.
Similar articles
-
Suppression of dwarf galaxy formation by cosmic reionization.Nature. 2006 May 18;441(7091):322-4. doi: 10.1038/nature04748. Nature. 2006. PMID: 16710415
-
The Dark Age of the universe.Science. 2003 Jun 20;300(5627):1904-9. doi: 10.1126/science.1085325. Science. 2003. PMID: 12817139
-
A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey.Nature. 2001 Mar 8;410(6825):169-73. doi: 10.1038/35065528. Nature. 2001. PMID: 11242069
-
Cosmology with cosmic shear observations: a review.Rep Prog Phys. 2015 Jul;78(8):086901. doi: 10.1088/0034-4885/78/8/086901. Epub 2015 Jul 16. Rep Prog Phys. 2015. PMID: 26181770 Review.
-
Cosmology with weak lensing surveys.Philos Trans A Math Phys Eng Sci. 2005 Dec 15;363(1837):2675-91. doi: 10.1098/rsta.2005.1672. Philos Trans A Math Phys Eng Sci. 2005. PMID: 16286284 Review.
Cited by
-
Time-Delay Cosmography: Measuring the Hubble Constant and Other Cosmological Parameters with Strong Gravitational Lensing.Space Sci Rev. 2024;220(5):48. doi: 10.1007/s11214-024-01079-w. Epub 2024 Jun 17. Space Sci Rev. 2024. PMID: 38899030 Free PMC article. Review.
-
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16.Nature. 2023 Mar;615(7954):809-812. doi: 10.1038/s41586-023-05761-x. Epub 2023 Mar 29. Nature. 2023. PMID: 36991192 Free PMC article.
-
sconce: a cosmic web finder for spherical and conic geometries.Mon Not R Astron Soc. 2022 Oct 8;517(1):1197-1217. doi: 10.1093/mnras/stac2504. eCollection 2022 Nov. Mon Not R Astron Soc. 2022. PMID: 36246727 Free PMC article.
-
Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks.Front Artif Intell. 2021 Jun 4;4:673062. doi: 10.3389/frai.2021.673062. eCollection 2021. Front Artif Intell. 2021. PMID: 34151255 Free PMC article.
-
Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian deep learning.Proc Natl Acad Sci U S A. 2021 Apr 20;118(16):e2020324118. doi: 10.1073/pnas.2020324118. Proc Natl Acad Sci U S A. 2021. PMID: 33853944 Free PMC article.
LinkOut - more resources
Full Text Sources

