Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development

Plant J. 2005 Jun;42(6):844-61. doi: 10.1111/j.1365-313X.2005.02418.x.


Prior analyses established that the maize (Zea mays L.) gl8a gene encodes 3-ketoacyl reductase, a component of the fatty acid elongase required for the biosynthesis of very long chain fatty acids (VLCFAs). A paralogous gene, gl8b, has been identified that is 96% identical to gl8a. The gl8a and gl8b genes map to syntenic chromosomal regions, have similar, but not identical, expression patterns, and encode proteins that are 97% identical. Both of these genes are required for the normal accumulation of cuticular waxes on seedling leaves. The chemical composition of the cuticular waxes from gl8a and gl8b mutants indicates that these genes have at least overlapping, if not redundant, functions in cuticular wax biosynthesis. Although gl8a and gl8b double mutant kernels have endosperms that cannot be distinguished from wild-type siblings, these kernels are non-viable because their embryos fail to undergo normal development. Double mutant kernels accumulate substantially reduced levels of VLCFAs. VLCFAs are components of a variety of compounds, for example, cuticular waxes, suberin, and sphingolipids. Consistent with their essential nature in yeast, the accumulation of the ceramide moiety of sphingolipids is substantially reduced and their fatty acid composition altered in gl8a and gl8b double mutant kernels relative to wild-type kernels. Hence, we hypothesize that sphingolipids or other VLCFA-containing compounds are essential for normal embryo development.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase
  • Acetyltransferases / genetics
  • Acetyltransferases / metabolism*
  • Alcohol Oxidoreductases / chemistry
  • Alcohol Oxidoreductases / genetics
  • Alcohol Oxidoreductases / metabolism*
  • Fatty Acid Elongases
  • Flowers / enzymology
  • Flowers / genetics
  • Gene Expression Regulation, Developmental / physiology*
  • Gene Expression Regulation, Plant / physiology
  • Germination
  • Isoenzymes
  • Mutation
  • Phenotype
  • Plant Leaves / enzymology
  • Plant Leaves / growth & development
  • Plant Proteins / chemistry
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Plant Roots / enzymology
  • Plant Roots / growth & development
  • Plants, Genetically Modified
  • Seedlings / enzymology
  • Seedlings / growth & development
  • Seeds
  • Zea mays / enzymology*
  • Zea mays / genetics
  • Zea mays / growth & development


  • Isoenzymes
  • Plant Proteins
  • Alcohol Oxidoreductases
  • glossy8 protein, Zea mays
  • 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase
  • Acetyltransferases
  • Fatty Acid Elongases