Radiation-induced increase in expression of the alpha IIb beta 3 integrin in melanoma cells: effects on metastatic potential

Radiat Res. 1992 Jun;130(3):281-8.

Abstract

We investigated the effects of nonlethal gamma radiation on the metastatic potential of the murine tumor cell line, B16 melanoma. The ability of B16 cells to adhere to fibronectin, which is in part mediated by the alpha IIb beta 3 integrin receptor, is predictive of metastatic potential. We determined that exposure to 0.25-2.5 Gy gamma radiation significantly enhanced B16 cell adhesion to fibronectin. The radiation-enhanced adhesion was dependent on enhanced expression of the alpha IIb beta 3 integrin. We observed that 15 min after 0.5 Gy radiation, 99% of irradiated B16 tumor cells were positively labeled with monoclonal antibodies directed against alpha IIb beta 3 compared to 22% of sham-irradiated cells. Radiation-enhanced expression of the alpha IIb beta 3 receptor is reversible and down-regulation begins within 2-4 h postirradiation. Finally, we found that irradiation significantly enhanced the ability of B16 cells to form metastases in a lung colony assay. It is concluded that a relationship exists between radiation effects on the B16 tumor cells, alpha IIb beta 3 receptor expression, adhesion in vitro, and metastasis in vivo. We suggest that low-dose radiation, at levels comparable to those used in fractionated or hyperfractionated radiotherapy, may alter the metastatic phenotype and potential of surviving tumor cells via a rapid alteration in their surface expression of alpha IIb beta 3 integrin receptors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Adhesion / physiology
  • Cell Adhesion / radiation effects*
  • Fibronectins / metabolism*
  • Integrins / physiology*
  • Melanoma, Experimental / physiopathology*
  • Neoplasm Metastasis / physiopathology*
  • Rats

Substances

  • Fibronectins
  • Integrins