Objectives: Estrogen is metabolized in the body through two mutually exclusive pathways yielding metabolites with different biological activities: the low estrogenic 2-hydroxyestrone (2-OHE1) and the highly estrogenic 16alpha-hydroxyestrone (16alpha-OHE1). The ratio of these metabolites (2/16) may be predictive of risk for developing breast cancer. Early evidence has demonstrated that exercise may alter estrogen metabolism to favor the weak estrogen, 2-OHE1.
Methods: Seventy-seven eumenorrheic females completed physical activity logs for two weeks prior to providing a luteal phase urine sample. Concentrations of 2-OHE1 and 16alpha-OHE1 were measured and the 2/16 ratio computed. Hierarchical regression, controlling for age and body mass index (BMI), was used to determine relationships between estrogen metabolites and daily physical activity.
Results: Regression analyses indicated significant positive relationships between physical activity and 2-OHE1 and the 2/16 ratio (p < 0.05) that appears to be independent of BMI. 16alpha-OHE1 was not significantly related to physical activity.
Conclusion: These results indicate that physical activity may modulate estrogen metabolism to favor the weak estrogen, 2-OHE1, thus producing a higher 2/16 ratio. This alteration in estrogen metabolism may represent one of the mechanisms by which increased physical activity reduces breast cancer risk.